If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35r^2+24r-35=0
a = 35; b = 24; c = -35;
Δ = b2-4ac
Δ = 242-4·35·(-35)
Δ = 5476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5476}=74$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-74}{2*35}=\frac{-98}{70} =-1+2/5 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+74}{2*35}=\frac{50}{70} =5/7 $
| s/4-6=-3 | | 3x(x+10)+18=-9 | | 3x^2+3x+114=0 | | s3+ 9= 12 | | 8x+9=2x+21 | | 42=7v/3v | | 3(4)-2y=10 | | 2x+1+5x=90 | | 5u/7u=30 | | 1/2x+3/4x=1/5+2x | | 5/7u=30 | | 15y+6=30 | | 3.5x+5.5=33.5 | | -16x^2+96x+96=0 | | 19x-11=-16 | | 5(6^4x)=14 | | 4x-4x+4x-3=13 | | 4x-3+4x-7+2x=110 | | 21r^2+26r-15=0 | | 2(4x-3)=3(2+4) | | 3^x+1=1/81 | | -21+r=-(2-3r)-3 | | 7-6x=5-5x | | -g+14g+-6g=-7 | | 24x+44=2x+55 | | 2k+3k=5k+2 | | 3(12-x)=22 | | 2h+6h+h=18 | | 35y^2-3y+3=0 | | 2r+8r+4=14 | | 16x-x-14x+1=9 | | -(10x-7)=-38 |